COMPUTATIONAL METHODS
Full geometry optimizations of Ar-C_414_3C (G = -NH_2, -OH, -CH_3, -F, -Cl, -Br, -H, -CF_3 and -NO_2) were carried out by DFT method using 6-311++G** basis set of the GAUSSIAN 98 system of programs [7-9] (Scheme 1).

Scheme 1. Electron donating substituents (G = -NH_2, -OH, -CH_3, -F, -Cl, -Br, -H, -CF_3 and -NO_2) and electron withdrawing substituents (G = -CF_3 and -NO_2) of aryl groups on the singlet-triplet energy gaps in cyclopentadienylidene Ar-C_414_3C were investigated.
To find a global minimum on a specific surface, all possible conformations of the given species were examined through scanning the specific dihedral angles at B3LYP/6-311++G** level. This was to obtain more accurate values of thermal energies (E), enthalpies (H) and Gibbs free energies (G). “Freq” keyword was used for obtaining zero-point energies (ZPE), thermal energies (E), enthalpies (H) and Gibbs free energies (G).

RESULTS AND DISCUSSION

The tool energy, E_T, zero-point energy, thermal energies (E), enthalpies (H) and Gibbs free energies (G) were calculated for aryl substituted divalent five membered (Ache) compounds $\text{Ar - C}_4\text{H}_3$ and $\text{Ar - C}_4\text{F}_3$ at B3LYP/6-311++G** level of theory (Scheme I and Table I).

Table 1. Sum of total energy, E_T, zero point energy, ZPE; thermal energy, (E), thermal enthalpy (H), thermal free energy (G) at B3LYP/6-311++G** for both singlet (s) and triplet (t) states of $\text{Ar - C}_4\text{H}_3$

<table>
<thead>
<tr>
<th>Compound</th>
<th>E_T (kcal/mol)</th>
<th>ZPE (kcal/mol)</th>
<th>E (kcal/mol)</th>
<th>H (kcal/mol)</th>
<th>G (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G=\text{NH}_2$</td>
<td>-300666.770</td>
<td>-300516.822</td>
<td>-300555.492</td>
<td>-300554.899</td>
<td>-300584.125</td>
</tr>
<tr>
<td>$G=\text{OH}$</td>
<td>-313140.845</td>
<td>-313045.675</td>
<td>-313039.531</td>
<td>-313038.939</td>
<td>-313067.886</td>
</tr>
<tr>
<td>$G=\text{CH}_3$</td>
<td>-290586.575</td>
<td>-290467.262</td>
<td>-290460.691</td>
<td>-290460.089</td>
<td>-290490.663</td>
</tr>
<tr>
<td>$G=F$</td>
<td>-328221.282</td>
<td>-328133.808</td>
<td>-328127.919</td>
<td>-328127.327</td>
<td>-328155.915</td>
</tr>
<tr>
<td>$G=\text{Cl}$</td>
<td>-554344.482</td>
<td>-554257.854</td>
<td>-554251.723</td>
<td>-554251.130</td>
<td>-554280.541</td>
</tr>
<tr>
<td>$G=\text{Br}$</td>
<td>-1880829.45</td>
<td>-1880743.23</td>
<td>-1880736.93</td>
<td>-1880736.34</td>
<td>-1880766.60</td>
</tr>
<tr>
<td>$G=\text{CF}_3$</td>
<td>-477483.876</td>
<td>-477379.763</td>
<td>-477372.091</td>
<td>-477371.498</td>
<td>-477405.345</td>
</tr>
<tr>
<td>$G=\text{NO}_2$</td>
<td>-394287.832</td>
<td>-394185.263</td>
<td>-394178.270</td>
<td>-394177.677</td>
<td>-394209.309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>E_T (kcal/mol)</th>
<th>ZPE (kcal/mol)</th>
<th>E (kcal/mol)</th>
<th>H (kcal/mol)</th>
<th>G (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G=\text{NH}_2$</td>
<td>-300675.569</td>
<td>-300572.565</td>
<td>-300566.270</td>
<td>-300565.677</td>
<td>-300595.460</td>
</tr>
<tr>
<td>$G=\text{OH}$</td>
<td>-313159.952</td>
<td>-313055.897</td>
<td>-313049.753</td>
<td>-313049.160</td>
<td>-313078.771</td>
</tr>
<tr>
<td>$G=\text{CH}_3$</td>
<td>-290596.375</td>
<td>-290476.962</td>
<td>-290470.381</td>
<td>-290470.789</td>
<td>-290500.462</td>
</tr>
<tr>
<td>$G=F$</td>
<td>-328230.926</td>
<td>-328143.661</td>
<td>-328137.763</td>
<td>-328137.171</td>
<td>-328166.433</td>
</tr>
<tr>
<td>$G=\text{Cl}$</td>
<td>-554353.987</td>
<td>-554267.501</td>
<td>-554261.384</td>
<td>-554260.792</td>
<td>-554290.812</td>
</tr>
<tr>
<td>$G=\text{Br}$</td>
<td>-1880838.95</td>
<td>-1880752.911</td>
<td>-1880746.614</td>
<td>-1880746.021</td>
<td>-1880776.929</td>
</tr>
<tr>
<td>$G=\text{CF}_3$</td>
<td>-477492.728</td>
<td>-477388.518</td>
<td>-477380.844</td>
<td>-477380.251</td>
<td>-477414.098</td>
</tr>
<tr>
<td>$G=\text{NO}_2$</td>
<td>-394296.463</td>
<td>-394193.795</td>
<td>-394186.892</td>
<td>-394186.209</td>
<td>-394217.842</td>
</tr>
</tbody>
</table>
DFT calculations specify that all triplet states of
Ar - C6H3 C (G = -NH2, -OH, -CH3, -F, -Cl, -Br, -H, -CF3 and -NO2) are more stable than their
corresponding singlet states. Calculated AGs show that electron donating substituents (G = -
NH2, -OH, -CH3, -F, -Cl and -Br) at phenyl group cause to increase ΔGₘ⁺ and electron
withdrawing substituents (G = -CF3 and -NO2) lead to decrease the ΔGₘ⁺ of Ar - C6H3 C.
Therefore, changing substituents at phenyl groups from electron donating toward electron
withdrawing groups lead to decrease the ΔGₘ⁺. Relative energy analysis reveal that substitution
of electron donating groups at phenyl group lead to stability of triplet state (respect to their
corresponding singlet state) while substitution of

Table 2. Total energy gaps, ΔE (eV), zero point energy gaps, ΔZPE (eV), thermal
enthalpy gaps ΔH (eV), thermal free energy gaps ΔG (eV) between singlet (s) and triplet (1) states and HOMO-LUMO
gaps of Ar - C6H3 C at B3LYP/6-311++G**

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔE (eV)</th>
<th>ΔZPE (eV)</th>
<th>ΔE (eV)</th>
<th>ΔH (eV)</th>
<th>ΔG (eV)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>ΔHOMO (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G = -NH2</td>
<td>10.799</td>
<td>10.743</td>
<td>10.777</td>
<td>10.778</td>
<td>11.335</td>
<td>-0.194</td>
<td>-0.112</td>
<td>0.082</td>
</tr>
<tr>
<td>G = -OH</td>
<td>10.106</td>
<td>10.222</td>
<td>10.222</td>
<td>10.222</td>
<td>10.885</td>
<td>-0.206</td>
<td>-0.118</td>
<td>0.089</td>
</tr>
<tr>
<td>G = -CH3</td>
<td>9.800</td>
<td>9.700</td>
<td>9.700</td>
<td>9.700</td>
<td>9.599</td>
<td>-0.210</td>
<td>-0.117</td>
<td>0.093</td>
</tr>
<tr>
<td>G = -F</td>
<td>9.644</td>
<td>9.833</td>
<td>9.844</td>
<td>9.844</td>
<td>10.518</td>
<td>-0.219</td>
<td>-0.123</td>
<td>0.095</td>
</tr>
<tr>
<td>G = -Cl</td>
<td>9.408</td>
<td>9.647</td>
<td>9.662</td>
<td>9.662</td>
<td>10.171</td>
<td>-0.220</td>
<td>-0.125</td>
<td>0.095</td>
</tr>
<tr>
<td>G = -CF3</td>
<td>9.481</td>
<td>9.637</td>
<td>9.647</td>
<td>9.647</td>
<td>10.258</td>
<td>-0.215</td>
<td>-0.121</td>
<td>0.096</td>
</tr>
<tr>
<td>G = -NO2</td>
<td>8.852</td>
<td>8.753</td>
<td>8.753</td>
<td>8.753</td>
<td>8.753</td>
<td>-0.231</td>
<td>-0.132</td>
<td>0.099</td>
</tr>
<tr>
<td>G = -C6H3</td>
<td>8.631</td>
<td>8.552</td>
<td>8.532</td>
<td>8.532</td>
<td>8.532</td>
<td>-0.239</td>
<td>-0.140</td>
<td>0.099</td>
</tr>
</tbody>
</table>

leaves to stability of triplet state (respect to their
corresponding singlet state) while substitution of
electron withdrawing groups leads to stability of
singlet state (respect to their corresponding
triplet state).

Electron withdrawing groups at phenyl groups
enforce a higher percentage of s-character on
nonbonding electrons at carbonic center of
Ar - C6H3 C. The higher s-character of
nonbonding electrons leads stability of singlet
state as well as decrease the single-triplet gap
ΔGₘ⁺. Furthermore, Electron withdrawing groups
at phenyl groups cause a high polarity of σ-C in
the direction: C-C. Strongly polarized bond
leads to more stability of singlet state as well as
decrease single-triplet gap ΔGₘ⁺.

The HOMO-LUMO gaps of Ar - C6H3 C were calculated at B3LYP/6-311++G** level.
The HOMO-LUMO gaps could be explained the
energy changes of singlet and triplet states
[10,11]. The results of singlet-triplet gap ΔGₘ⁺
calculations are fully supported by HOMO-
LUMO gaps (Table 1). HOMO-LUMO gaps are
increased with substitution of electron withdrawing
groups at phenyl group. In contrast,

HOMO-LUMO gaps are decreased with substitution of electron donating groups at
phenyl group. Higher HOMO-LUMO gaps lead to
increase stability of the singlet state as well as
decrease of the singlet-triplet gap ΔGₘ⁺.

CONCLUSION

Calculated ΔGₘ⁺ show that electron donating
substituents (G = -NH2, -OH, -CH3, -F, -Cl and
-Br) at phenyl group cause to increase ΔGₘ⁺ and
electron withdrawing substituents (G = -CF3 and
-NO2) lead to decrease the ΔGₘ⁺ of Ar - C6H3 C.
Relative energy analysis reveals that substitution
of electron donating groups at phenyl group lead
to stability of triplet state (respect to their
corresponding singlet state) while substitution of
electron withdrawing groups lead to stability of
singlet state (respect to their corresponding
triplet state).

ACKNOWLEDGMENT

The financial support of Science and Research
Branch of Islamic of Azad University is
gratefully acknowledged.
REFERENCES

(c) E. Vessally, et. al. Asian J. Chem. 19, 5000, (2007);

